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Received 17 August 2001 and Received in final form 11 October 2001

Abstract. The hopping motion of a classical bounded pair of two particles along a chain is investigated.
It is shown that in the asymmetric case of the system dynamics including excited states which differ
from the respective ground states by the barrier to be overcome by one of the two particles, the over-
and underpopulation of these excited states leads to a directed motion of the particle pair. Thereby,
overpopulation results in one direction of motion, whereas underpopulation results in the opposite direction,
and the mean velocity is determined by the amount of over-resp. underpopulation. For small deviations
from equilibrium, the system exhibits linear response well known from other ratchet-type models. Possible
generalizations and applications are discussed.

PACS. 05.60.Cd Classical transport – 05.40.−a Fluctuation phenomena, random processes, noise,
and Brownian motion – 87.16.Nn Motor proteins

1 Introduction

Despite that the handling and manipulation of individ-
ual atoms and molecules has become widespread in many
fields of science [1], the important challenge has still re-
mained to further ‘tame’ them and make nanoscale objects
perform useful mechanical functions. While first steps in
the direction towards molecular machinery have already
been taken experimentally [2], specifically the investiga-
tion of how to transform the supplied energy in an effi-
cient and controllable way to a specific function on the
molecular scale is still at its beginning. Much of the the-
oretical research in this area has focused on the case of
the function to be performed being directed transport. In
particular, the motion of particles in ratchet potentials
without spatial symmetry under the influence of stochas-
tic and/or periodic forces has been intensively discussed,
both in terms of Newton-/Langevin-type equations of mo-
tion [3] or focusing on hopping models [4], partly moti-
vated by possible applicability to biological motors [5].
Having the construction of man-made molecular motors
in mind, one would like to establish concepts which allow
for the local or internal conversion of the supplied en-
ergy to directed motion. For example, in so-called n-state
ratchets, the switching between the different potentials the
particle is subject to can also be considered as induced by
driven changes between internal states of the particle, thus
providing a local or internal conversion of the supplied en-
ergy. Another possibility is given by systems consisting of
two coupled particles, for example two identical particles
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in an on/off-ratchet [6] or in a static ratchet potential us-
ing a time-dependent inter-particle coupling [7], as well as
two particles which differ by their frictional behavior [8] or
simply by their mass [9]. It is preferable to develop more
concepts in this direction, which may either be along the
lines of the ones outlined above or may rely on different
mechanisms such as some recently proposed alternative
concepts [10].

The aim of this work is to study a hopping model of
a coupled particle pair which covers and combines several
aspects of the before-mentioned continuous two particle
models [6–9]. To be specific, the hopping motion of a clas-
sical bounded pair of two particles along an equipotential
chain is investigated in the asymmetric case of the system
dynamics including excited states which differ from the
respective ground states by the barrier to be overcome by
one of the two particles. Analogously to previous models,
bringing the system into non-equilibrium by over- and un-
derpopulating these excited states leads to a directed mo-
tion of the particle pair. Thereby, overpopulation results in
one direction of motion, whereas underpopulation yields
the opposite direction, and the mean velocity is deter-
mined by the amount of over- resp. underpopulation, with
the system exhibiting a linear response regime for small
deviations from equilibrium [11]. The motivation to study
this model is two-fold: On the one hand, it might be con-
sidered as a simple discretized version of the correspond-
ing Langevin description in the overdamped limit, provid-
ing an intuitive physical picture of particles stochastically
moving between sites relevant for microscopic transport
processes [12]. Additionally, in difference to continuous de-
scriptions, the Markovian nature of hopping models allows
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a general discussion in the context of distinct system states
and transitions between them, making hopping systems
in general of broader applicability beyond directed trans-
port. This point is readdressed in the Conclusions towards
the end.

2 Model

In the system under consideration, there are two particles
located on a one-dimensional equipotential chain, the left
and right one labelled 1 and 2, respectively. The pair is
coupled in the sense that the two particles either sit on
nearest neighboring sites, or that they are separated by a
maximum of one site in between, but not further apart.
There is, however, no further interaction between them.
One can easily convince oneself that to map this system
on distinct states under the restrictions that (i) two states
are connected by not more than one transition, and that
(ii) each transition corresponds to a specific particle hop,
one needs a minimum of four distinct states. These four
states are called further on σA, σB, σC , and σD. There
are the two states σA and σC , characterized by the par-
ticles sitting on nearest neighboring sites, as well as the
two states σB and σD, characterized by the two particles
being separated by one site, see Figure 1. In the follow-
ing, it is assumed that (i) the system can become excited
when the two particles are on nearest neighboring sites,
leading to two additional excited states σ?A and σ?C which
differ in potential energy by an energy difference ε when
compared to the four equipotential states σA, σB, σC, and
σD. The two excited states σ?A and σ?C can be reached,
analogously to the states σA and σC, from the states σB
or σD by a transition corresponding to a particle hop, or
by direct transitions from the states σA or σC which do
not involve a particle hop, cf. Figure 1a. As shown below,
the latter two additional transitions not involving a parti-
cle hop do neither alter the symmetry nor the equilibrium
behavior of the system, but introduce a simple manner
of feeding energy into the system by allowing to ‘pump’
these two transitions. In addition to the existence of the
excited states it is assumed that (ii) they differ from the
respective ground states by the barrier particle 2 has to
overcome when leaving or entering the excited states, thus
breaking the spatial symmetry in a ratchet-type manner.

To exemplify the relation between the change in sys-
tem state and the motion of the two particles, in Figure 1b
shown are six representative examples of particle motion.
In all cases, it is assumed that the system is in state σA
at the beginning, with both particles sitting on nearest
neighboring sites. It should be noted that due to symme-
try, analogous examples can be constructed by exchanging
simultaneously σA � σC, σ?A � σ?C, and σB � σD.

In example (i), σA
1→ σB

1→ σA (the numbers above
the arrows indicate which particle moves during the tran-
sition), particle 1 hops away from particle 2 to the left,
overcoming the barrier ∆ ≥ 0 (for the actual transition
rates see below, left and right refers here and in the fol-
lowing to the particles’ spatial motion), which brings the
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Fig. 1. (a) Sketch of the four states σA, σB, σC, and σD and
the two excited states σ?A, and σ?C, as well as the respective
transitions with the barriers ∆ and ∆′ and the energy differ-
ence ε. The vertical axis indicates the potential energy, and as
an example the case ε > 0 and ∆′ > ∆ is shown. The number
at the transition arrows indicate which particle is moving dur-
ing the respective transition. (b) Six representative examples
of particle motion in relation to the change in system state, all
starting with the system being in state σA. The examples show
snapshots of the particles’ position, and the arrows indicated
which particle motion lead to the respective current system
state, the latter named on the right site of the snapshot. In
the two examples (iv) and (vi), the system passes through the
excited state σ?A, indicated by ? in the figure. In all examples,
both particle 1 and 2 surmount the barrier ∆ during their
hops, with the exception of one hop in the last example (vi),
during which particle 2 overcomes the different barrier ∆′ in

the step σ?A
2→ σD, indicated by the larger arrow. It should be

noted that due to symmetry, analogous examples can be con-
structed by exchanging simultaneously σA � σC, σ

?
A � σ?C,

and σB � σD.

system to state σB. Afterwards, particle 1 hops back to the
right, surmounting the same barrier ∆, which brings the
system back to state σA. In example (ii), σA

2→ σD
2→ σA,

particle 2 hops away from particle 1 to the right, overcom-
ing the barrier ∆, which brings the system to state σD.
Similar to example (i), particle 2 hops back to the left
in the next step, surmounting the same barrier ∆, which
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brings the system back to state σA. In both examples, the
whole pair does not gain any distance.

This is in difference to the last four examples, in which
the whole pair moves one step to the left, as in exam-
ples (iii) and (iv), or to the right, as in example (v) and
(vi). The direction of motion depends whether particle 1
hops before particle 2 (step to the left) or inversely parti-
cle 2 hops before particle 1 (step to the right). In exam-
ple (iii), σA

1→ σB
2→ σC, by a hop of particle 1 to the left,

the system changes from state σA to state σB as in the
first step of example (i). In difference to example (i), in
the next step particle 2 follows its predecessor and hops
to the left, overcoming barrier ∆, which brings the sys-
tem to state σC . In example (iv), σA → σ?A

1→ σB
2→ σC ,

the system first changes to the excited state σ?A without
a particle hop, after which particle 1 and then particle 2
hop to the left, both overcoming barrier ∆ as in exam-
ple (iii), which brings the system via state σB to state σC .
It is important to note that particle 1, despite that its hop
occurs when the system is in the excited state σ?A, has to
surmount the same barrier ∆ as when the system was in
state σA. In example (v), σA

2→ σD
1→ σC , by a hop of

particle 2 to the right, the system changes from state σA
to state σD as in the first step of example (ii). In differ-
ence to example (ii), in the next step particle 1 follows its
predecessor and hops to the right, overcoming barrier ∆,
which brings the system to state σC . In the last exam-
ple (vi), σA → σ?A

2→ σD
1→ σC , the system first changes

to the excited state σ?A without a particle hop, after which
particle 2 and then particle 1 hop to the right. As the hop
of particle 2 occurs when the system is in an excited state,
in this case σ?A, it has to surmount the different barrier
∆′ ≥ 0, as indicated by the larger arrow in Figure 1b,
whereas afterwards particle 1 has to overcome barrier ∆
as in the examples before.

The actual transition rates connecting pairwise the
six system states can be directly read off from Fig-
ure 1a. For example, for states on the same potential
energy such as σA and σB, the interconnecting transi-
tion rates are given by ΓσA→σB = exp[−∆/(kBT )] and
ΓσB→σA = exp[−∆/(kBT )], so that detailed balance
ΓσB→σA/ΓσA→σB = 1 is fulfilled. For states on different
potential energies such as σB and σ?A or σB and σ?C, the
interconnecting transition rates for ε > 0 are ΓσB→σ?A =
exp[−(ε + ∆)/(kBT )] and Γσ?A→σB = exp[−∆/(kBT )]
as well as ΓσB→σ?C = exp[−(ε + ∆′)/(kBT )] and
Γσ?C→σB = exp[−∆′/(kBT )], so that ΓσB→σ?A/Γσ?A→σB =
ΓσB→σ?C/Γσ?C→σB = exp[−ε/(kBT )], again in accordance
with detailed balance. Particularly important for the fur-
ther discussion are the transition rates connecting the
states σA and σ?A or σC and σ?C, respectively, which for
ε > 0 are given by ΓσA→σ?A = ΓσC→σ?C = exp[−ε/(kBT )]
and Γσ?A→σA = Γσ?C→σC = 1, so that ΓσA→σ?A/Γσ?A→σA =
ΓσC→σ?C/Γσ?C→σC = exp[−ε/(kBT )]. In all mentioned cases,
kB denotes Boltzmann’s constant and T is the absolute
temperature. Although the system under consideration is
quite simple, an exact analytical treatment seems not to
be feasible, particularly in the non-equilibrium case fo-
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Fig. 2. Plot of the probability distribution function Pt(x) vs.
mean coordinate x of the particle pair, with x = x(t) = [x1(t)+
x2(t)]/2, after t time steps for ∆/(kBT ) = 1, ∆′/(kBT ) =
2, ε/(kBT ) = 1, and (a) equilibrium case (corresponds to
η/(kBT ) = 0, pure diffusive motion), and non-equilibrium
cases (b) η/(kBT ) = 1 (biased motion to the right), and
(c) η/(kBT ) = −1 (biased motion to the left). In each sub-
figure, three different times are shown, t = 104, 2 × 104,
and 3× 104.

cused on below. Therefore, the following discussion re-
lies on numerical simulations of the system dynamics [13].
The quantities of interest are the time dependent particle
pair coordinate x(t) = [x1(t) + x2(t)]/2, in units of num-
ber of sites, for a particle pair being initially located at
x1(t = 0) = 0 and x2(t = 0) = 1, where t denotes the
number of time steps in units of attempted state changes,
as well as the mean coordinate’s probability distribution
Pt(x), where Pt(x) dx is the probability to find the par-
ticle pair between coordinate x and x + dx after t time
steps. By calculating the first moment of the latter quan-
tity, one obtains the mean distance x(t) =

∫∞
−∞ xPt(x) dx

after t time steps, from which the mean velocity v is cal-
culated as the long-time limit v = limt→∞ x(t)/t.

Before discussing the behavior of the system un-
der non-equilibrium conditions, let me briefly mention
the behavior of the system being in thermal equilib-
rium. Here, in particular when the probabilities ΠσA ,
Πσ?A

, ΠσC and Πσ?C
to be in the states σA, σ?A, σC ,

and σ?C , respectively, fulfill Boltzmann’s law Πσ?A
/ΠσA =

Πσ?C
/ΠσC = exp[−ε/(kBT )], diffusive motion of the parti-

cle pair is observed, as one expects. In Figure 2a shown is
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the corresponding probability distribution function Pt(x),
which is spatially symmetric around the particle pair’s
starting point and broadens with increasing number of
time steps. It should be noted that such a diffusive mo-
tion of the particle pair is observed even in the case of the
two barriers being different, ∆′ 6= ∆, as it is indeed the
case in Figure 2a.

3 Results

The following discussion focuses on the behavior of the
system under non-equilibrium conditions resulting from
over- and underpopulating the excited states σ?A and σ?C ,
so that either Πσ?A

/ΠσA = Πσ?C
/ΠσC > exp[−ε/(kBT )]

(i.e. overpopulated) or Πσ?A
/ΠσA = Πσ?C

/ΠσC <
exp[−ε/(kBT )] (i.e. underpopulated). In the numerical
simulation, the over- and underpopulation is done sim-
ilarly to an actual experiment by ‘pumping’ the transi-
tions σA ↔ σ?A and σC ↔ σ?C feeding energy into the
system, which is numerically described herein by an en-
ergy parameter η. In the ‘unpumped’ equilibrium case
(η = 0) fulfilling detailed balance, one has the tran-
sition rates ΓσA→σ?A = ΓσC→σ?C = exp[−ε/(kBT )] and
Γσ?A→σA = Γσ?C→σC = 1 between the respective two states,
as discussed above. These four rates are replaced in the
case of ‘pumping’ by four new generalized transition rates,
either by: (i) Γ̃σA→σ?A = Γ̃σC→σ?C = exp[−(ε + η)/(kBT )]
and Γ̃σ?A→σA = Γ̃σ?C→σC = 1 for η ≥ 0 or (ii) Γ̃σA→σ?A =
Γ̃σC→σ?C = exp[−ε/(kBT )] and Γ̃σ?A→σA = Γ̃σ?C→σC =
exp[η/(kBT )] for η ≤ 0. The reason for treating the cases
η ≥ 0 and η ≤ 0 separately is to ensure that Γ̃σ?A→σA ≤ 1,
Γ̃σA→σ?A ≤ 1, Γ̃σ?C→σC ≤ 1, and Γ̃σC→σ?C ≤ 1 ∀η. In
both cases (i) and (ii), one gets Γ̃σA→σ?A/Γ̃σ?A→σA =
Γ̃σC→σ?C/Γ̃σ?C→σC = exp[−(ε + η)/(kBT )], so that η > 0
results in underpopulating the excited states σ?A and σ?C ,
whereas η < 0 yields overpopulating.

When performing numerical simulations for η 6= 0, in
the case of identical barriers ∆′ = ∆ one nevertheless ob-
serves a diffusive motion of the particle pair, i.e. a mean
velocity v = 0, as the spatial symmetry of the excited
states is not broken. The resulting probability distribu-
tion function Pt(x) is quite similar to the one shown in
Figure 2a. For the case ∆′ 6= ∆, however, a directed trans-
port of the particle pair is observed for η 6= 0. For example
in the case ∆′ > ∆, one obtains a mean velocity v > 0
when underpopulating the excited states σ?A and σ?C by
η > 0 (see Fig. 2b), and a mean velocity v < 0 when
overpopulating the excited state σ?A and σ?C by η < 0 (see
Fig. 2c). In the opposite case ∆′ < ∆, one gets the inverse
behavior: A mean velocity v < 0 results for η > 0, whereas
η < 0 yields a mean velocity v > 0.

The actual value of the mean velocity v for given ε,
∆, and ∆′ is determined by the amount of over- resp.
underpopulation, i.e. by the value of η, as shown in Fig-
ure 3. Therefore, both the direction and the mean velocity
of the particle pair’s motion can be chosen dynamically.
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Fig. 3. Plot of the mean velocity v vs. bias η for ∆/(kBT ) =
1 and ∆′/(kBT ) = 2 (full symbols) and ∆/(kBT ) = 2 and
∆′/(kBT ) = 1 (open symbols). The results are obtained for
ε/(kBT ) = 1/2 (circles), ε/(kBT ) = 1 (squares), ε/(kBT ) = 2
(triangles), ε/(kBT ) = 3 (diamonds), and ε/(kBT ) = 4 (stars).
The two lines indicate fits in the linear response regime for
the case ε/(kBT ) = 1 (squares), with v ∼= 0.003η/(kBT ) and
v ∼= −0.002η/(kBT ) for |η|/(kBT ) < 0.7.

This means that, although the system’s symmetry is bro-
ken statically by choosing either ∆′ > ∆ or ∆′ < ∆,
one can benefit in two different manners from this bro-
ken symmetry. It is important to note that there exists
a linear response regime in which v depends linearly on
η, which is generic of ratchet-type models [11]. For exam-
ple for the value ε/(kBT ) = 1, for the case ∆/(kBT ) = 1
and ∆′/(kBT ) = 2, linear response v ∼= 0.003 η/(kBT )
holds for |η|/(kBT ) < 0.7, see Figure 3. Analogously, for
the inverse case ∆/(kBT ) = 2 and ∆′/(kBT ) = 1, linear
response v ∼= −0.002 η/(kBT ) holds for the same range
of values for η. Therefore, the slight asymmetry observed
when comparing Figures 2b and c origins in the fact that
the values η/(kBT ) = ±1 used in the figures are outside
the linear response regime.

The discussion so far has concentrated on the case in
which σ?A and σ?C are really excited states meaning that
they are higher in potential energy when compared to the
other four states, i.e ε > 0. However, the model under
discussion can easily be generalized to the case ε = 0
or even ε < 0. The latter case means that the states
σ?A and σ?C are lower in potential energy when compared
to the other four states. Concerning the resulting tran-
sitions, for example for the states σB and σ?A or σB and
σ?C, respectively, the interconnecting transition rates for
ε ≤ 0 are given by ΓσB→σ?A = ΓσB→σ?C = exp[−∆/(kBT )]
and Γσ?A→σB = Γσ?C→σB = exp[−(∆ − ε)/(kBT )], so that
Γσ?A→σB/ΓσB→σ?A = Γσ?C→σB/ΓσB→σ?C = exp[ε/(kBT )].
Analogously, the transitions connecting σA and σ?A or σC
and σ?C, respectively, are given by (i) Γ̃σ?A→σA = Γ̃σ?C→σC =
exp[−(η − ε)/(kBT )] and Γ̃σA→σ?A = Γ̃σC→σ?C = 1 for
η ≥ 0 or (ii) Γ̃σ?A→σA = Γ̃σ?C→σC = exp[ε/(kBT )] and
Γ̃σA→σ?A = Γ̃σC→σ?C = exp[η/(kBT )] for η ≤ 0. This gener-
alization allows to study the dependence of the maximum
velocity vmax = limη→−∞ v for maximal overpopulation
or vmax = limη→∞ v for maximal underpopulation on the
energy difference ε for both ε ≥ 0 and ε ≤ 0, the results
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Fig. 4. Plot of the maximum velocity vmax vs. energy ε for
η/(kBT ) = −20 (full symbols) and η/(kBT ) = 20 (open sym-
bols). The different symbols correspond to ∆/(kBT ) = 1 and
∆′/(kBT ) = 2 (circles), ∆/(kBT ) = 1 and ∆′/(kBT ) = 3
(squares), and ∆/(kBT ) = 1 and ∆′/(kBT ) = 4 (triangles).

are shown in Figure 4. For given values of ∆ and ∆′,
a resonance-like behavior as a function of ε is observed.
The maximum velocity vmax shows a maximum at ε = 0
and drops to zero for |ε| � max{∆,∆′}. The reason for
the best performance being observed for vanishing energy
difference is, that in this case the equilibrium probabilities
to be in the states σA, σC , σ?A, and σ?C are equal and hence
the over- and underpopulating can draw the best benefit
from the difference between the two barriers ∆ and ∆′.

Concerning a second generalization it should be noted
that the model can be reformulated by using four different
barriers ∆1, ∆?

1, ∆2, and ∆?
2 instead of the two barriers

∆ and ∆′. Here, ∆1 and ∆?
1 are the barriers particle 1

has to overcome when leaving or entering the states σA
and σC or σ?A and σ?C , respectively. Analogously, particle 2
has to overcome the barriers ∆2 and ∆?

2 when leaving or
entering the states σA and σC or σ?A and σ?C, respectively.
The above discussion has concentrated on the case ∆1 =
∆?

1 = ∆2 = ∆ and ∆?
2 = ∆′. It should be noted that in the

general case of four different barriers, directed transport
is observed for ∆1 6= ∆?

1 and ∆2 = ∆?
2 or ∆2 6= ∆?

2 and
∆1 = ∆?

1. In the case that both ∆1 6= ∆?
1 and ∆2 6= ∆?

2, a
general answer whether directed transport occurs or not is
difficult to give and depends on the actual barrier values.
For example, directed transport is observed for ∆1 < ∆?

1

and ∆2 > ∆?
2, but not for ∆1 = ∆2 and ∆?

1 = ∆?
2.

4 Conclusions

In summary, it has been shown that a pair of bounded par-
ticle can show a directed motion in the asymmetric case
of the system dynamics including excited states which dif-
fer from the respective ground states by the barrier to be
overcome by one of the two particles. The directed motion
is caused and controlled by an externally driven over- resp.
underpopulation of these excited system states. For small
deviations from equilibrium, the system shows a linear re-
sponse well known from other ratchet-type models [11].

Concerning possible applications of the proposed con-
cept, in particular to machinery on the mesoscopic to

nanometer scale, it is important to stress two points:
(i) The discussed directed transport is only one example of
one specific purpose of such a machine. As the discussion
has been done in the general context of system states and
random transitions between them, any other purpose is
possible by assigning a different meaning to what is called
‘left’ and ‘right’ herein. (ii) The ‘pumping’ of the transi-
tions σA ↔ σ?A and σC ↔ σ?C does not need necessarily to
be done by physical means such as for example by light,
but might also be supplied chemically by some kind of
‘fuel,’ similarly as the non-equilibrium chemical reaction
adenosine triphosphate (ATP) to adenosine diphosphate
(ADP) drives motor proteins in biological systems.

Helpful comments on the manuscript by A. Ordemann are
gratefully acknowledged.
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